Sekolah.web.id – Di tengah perkembangan dunia pendidikan yang semakin dinamis, matriks telah menjadi salah satu topik matematika yang esensial di tingkat Sekolah Menengah Atas (SMA). Untuk membantu siswa memahami konsep ini secara lebih mendalam, berikut adalah sebuah soal cerita yang menantang sekaligus menginspirasi.
Soal Cerita:
PT XYZ adalah sebuah perusahaan yang bergerak di bidang produksi pakaian. Dalam satu minggu, perusahaan ini membuat tiga jenis produk: kaos, kemeja, dan jaket. Informasi produksi dalam satu minggu dijelaskan dalam matriks A berikut:
Baris pertama matriks A menunjukkan jumlah bahan baku (dalam kilogram) yang digunakan untuk masing-masing produk: kaos, kemeja, dan jaket. Baris kedua menunjukkan jumlah jam kerja yang diperlukan, dan baris ketiga menunjukkan jumlah tenaga kerja yang terlibat.
Biaya per kilogram bahan baku, per jam kerja, dan per tenaga kerja ditunjukkan dalam matriks B sebagai berikut:
Pertanyaan:
Berapakah total biaya yang dikeluarkan PT XYZ untuk produksi kaos, kemeja, dan jaket dalam satu minggu?
Pembahasan:
Untuk menemukan total biaya, kita perlu mengalikan matriks A dengan matriks B. Ini adalah operasi matriks yang dikenal sebagai perkalian matriks.
Dimana ( C ) adalah matriks biaya untuk setiap produk. Perkalian matriks dilakukan dengan mengalikan elemen baris matriks pertama dengan kolom matriks kedua dan menjumlahkannya untuk setiap elemen. Dalam konteks ini, kita hanya memiliki satu kolom di matriks B, sehingga hasilnya akan menjadi matriks kolom dengan tiga elemen.
- Untuk kaos: (150×10000)+(200×50000)+(100×75000)=1500000+10000000+7500000=18250000
- Untuk kemeja: (120×10000)+(180×50000)+(90×75000)=1200000+9000000+6750000=16950000
- Untuk jaket: (50×10000)+(80×50000)+(60×75000)=500000+4000000+4500000=9000000
Kesimpulan:
Total biaya yang dikeluarkan oleh PT XYZ untuk produksi kaos, kemeja, dan jaket dalam satu minggu adalah Rp 18.250.000 untuk kaos, Rp 16.950.000 untuk kemeja, dan Rp 9.000.000 untuk jaket.
Soal cerita ini tidak hanya menguji kemampuan siswa dalam memahami konsep matriks, tetapi juga membantu mereka melihat aplikasi nyata dari matematika dalam dunia bisnis dan industri.
Dengan pemahaman yang baik tentang matriks, siswa SMA dapat mengembangkan kemampuan analitis dan pemecahan masalah yang akan berguna dalam karir mereka di masa depan.